GRANT N°: 871153 **PROJECT ACRONYME:** JERICO-S3 PROJECT NAME: Joint European Research Infrastructure for Coastal Observatories - Science, services, sustainability COORDINATOR: Laurent DELAUNEY - Ifremer, France - jerico-s3@ifremer.fr | | JERICO-S3 MILESTONE | | | | | | | | | |--|--|--|--|--|--|--|--|--|--| | Joint Europea | n Research Infrastructure network for Coastal Observatory | | | | | | | | | | | Science, Services, Sustainability | | | | | | | | | | MS#, WP# and full JERICO-S3 MS.30 - WP5 - "Revised SOP provided to WP7 for adjustment of the WASP" | | | | | | | | | | | 5 Key words | Environmental DNA, automated sample processor, molecular sensor, qPCR, ecogenomic sensor | | | | | | | | | | Lead beneficiary | AZTI | | | | | | | | | | Lead Author | Naiara Rodríguez-Ezpeleta | | | | | | | | | | Co-authors | Oriol Canals, Anders Lanzen | | | | | | | | | | Contributors | Dominique Durand, Catherine Dreanno, Laurent Delaunay, Veronique Creach, Fabrice Not, Julien Mader | | | | | | | | | | Submission date | 04 September 2024 | | | | | | | | | #### → Please specify the type of milestone: | | Report after a workshop or a meeting (TEMPLATE A) | |---|---| | | Report after a specific action (TEMPLATE B) (test, diagnostic, implementation,) | | | Document (TEMPLATE B) (guidelines,) | | Χ | Other (TEMPLATE B) (to specify) TABLE | | Diffusion list | | | | |--------------------------|---------------|---------------------|-------| | Consortium beneficiaries | Third parties | Associated Partners | other | #### **PROPRIETARY RIGHTS STATEMENT** THIS DOCUMENT CONTAINS INFORMATION, WHICH IS PROPRIETARY TO THE **JERICO-S3** CONSORTIUM. NEITHER THIS DOCUMENT NOR THE INFORMATION CONTAINED HEREIN SHALL BE USED, DUPLICATED OR COMMUNICATED EXCEPT WITH THE PRIOR WRITTEN CONSENT OF THE **JERICO-S3** COORDINATOR. According to the Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons with regard to the processing of personal data and on the free movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation) and the 78-17 modified law of 6 January 1978, you have a right of access, rectification, erasure of your personal data and a right of restriction to the data processing. You can exercise your rights before the Ifremer data protection officer by mail at the following address: IFREMER – Délégué à la protection des données- Centre Bretagne – ZI de la Pointe du Diable – CS 10070 – 29280 Plouzané - FRANCE or by email: dpo@ifremer.fr // jerico@ifremer.fr Ifremer shall not hold your personal data for longer than necessary with regard to the purpose of the data processing and shall destroy it thereafter. **Reference:** JERICO-S3-WP5-M26-12072023-V1.1 # **TABLE OF CONTENT** | TABL | LE OF CONTENT | 1 | | | | | | | | |------|--|----|--|--|--|--|--|--|--| | A) | A) TEMPLATE B - Other cases (not a workshop or meeting report) | | | | | | | | | | 1. | B - Objectives | 2 | | | | | | | | | 2. | B and implementation process | 2 | | | | | | | | | 3. | B - Main report | 2 | | | | | | | | | 4. | B - Conclusion | 10 | | | | | | | | | | 4.1. Synthesis of main conclusion | 10 | | | | | | | | | | 4.2 Next steps (work plan) | 10 | | | | | | | | Reference: JERICO-S3-WP5-M26-12072023-V1.1 ## A) TEMPLATE B - Other cases (not a workshop or meeting report) ## 1.B - Objectives The main objective of this milestone was to provide a set of Standard Operating Procedures to WP7 for adjustment of the WASP so that eDNA sampling can be integrated. For that aim, a review of the different approaches for automated eDNA sampling has been performed so that a diagnostic of the potential and drawbacks of each type can be drawn. ## 2.B and implementation process The review is based on a bibliographic search performed to identify these scientific publications reporting development and/of use of automatic DNA samplers and analysis devices, on the outputs of a workshop on Marine Omics Technology and Instrumentation Workshop which took place October 10th - 12th, 2023 at the Monterey Bay Aquarium Research Institute (MBARI) and on communication with scientists and technology developers. MBARi is one of the pioneers on the development of such developed Environmental Sample Processor devices and the (ESP: https://www.mbari.org/technology/environmental-sample-processor-esp/) which is commercially available through McLane Labs. The status of these technologies and future avenues was thoroughly discussed during the workshop (https://sites.google.com/mbari.org/moti-workshop/home), which joined together technology developers and users and several of the available and in development samplers were presented such as the RoCSI (by Julie Robidart), Smith Root (Austen Thomas), Pufferfish from Aquatic Labs (Allan Adams), SADIe (Kim Parsons), among others. ## 3.B - Main report Although most studies performed so far require an active sample acquisition and processing, there are several ongoing initiatives which have made significant progress towards automated sampling and analysis of eDNA. The table below summarizes some of the achievements and available devices: Reference: JERICO-S3-WP5-M26-12072023-V1.1 | Paper / link | Year | Insitute | Type of study | Organisms
targeted | Autonomou
s sampling
equipment /
device | Samplin
g
capacity | In-
device
storage | Molecular
profiling
or
biosensor
s on
device | Device
readiness
and use in
monitoring | In-lab
analysis | Summary of results | |---|------|----------|---|---|--|--|--|---|---|--------------------|--| | Jones et al. (2008) A robotic molecular method for in situ detection of marine invertebrate larvae. https://doi.org/10.1111/j.1471-8286.2007.02021.x | 2008 | MBARI | Larvae
monitoring
proof of
concept | Invertebrate spp. | Moored ESP | Continou
s | - | SHA for 5 invertebrat e spp. | ESP
commerciall
y available | Valdiatio
n | SHA
profiles
validated
by lab-
based
assays | | Scholin et al. (2009) Remote Detection of Marine Microbes, Small Invertebrates, Harmful Algae, and Biotoxins using the Environmental Sample Processor (ESP). Oceanography. https://doi.org/10.5670/oceanog.200 9.46 | 2009 | MBARI | Technical development | (depends
on
configuratio
n) | 1G? and
Deep ESP | Varies
with
specs | RNALate
r | SHA and
ELISA | ESP
commerciall
y available
(see above) | - | | | Preston et al. (2011) Underwater
Application of Quantitative PCR on
an Ocean Mooring. PloS ONE.
https://doi.org/10.1371/journal.pone.
0022522 | 2011 | MBARI | Technical
development
/ Proof of
Concept | Prokaryotic
(total
RuBisCo
and
Synechococ
cus) | 1G? ESP.
Moored | Here RT monitorin g for 28 days every 12 minutes with qPCR. 1L filtered amd 0.5 mL lysate used for | (samples
for
Ottesen
et al
collected
in same
deplyom
ent) | DNA
extraction
and RT-
qPCR
(Proof of
concept).
Also
nutrient
sensor and
fluoromete
r | ESP
commerciall
y available
(but likely
not RT-
qPCR
module,
developed
at Lawrence
Livermore
Nat Lab. | - | First successful proof of concept of DNA extraction and RT- qPCR underwate r, using algal bloom in Monterrey Bay | | Ottesen et al. (2011) Metatranscriptomic analysis of autonomously collected and preserved marine bacterioplankton. ISMEJ. http://doi.org/10.1038/ismej.2011.70 | 2011 | MIT (MA,
USA) | Metatranscri
ptomic time
series
(weekly) | Prokaryotic diversity | 1G?-ESP
from
MBARI.
Moored | extractio
n
5 filtered
samples | RNALate
r | Not used | ESP
commerciall
y available | Metatran
scriptomi
cs | Temporal variation of plankton metatransc riptome | |--|------|---|--|---|--|---|------------------|---------------------------|---|-----------------------------|---| | Pargett et al. (2013) Deep water instrument for microbial identification, quantification, and archiving. Proceedings of 2013 OCEANS - San Diego. https://doi.org/10.23919/OCEANS.2 013.6741066 | 2013 | MBARI | Technical
development
/ Proof of
Concept | Prokaryotic
spp. and
total
abundance | Deep-ESP
(benthic
lander) | Deep-sea version of ESP operating to 4000m. Filtering and on-device molecula r assays | Not
specified | RT-qPCR
(?) and
SHA | Developed
in-house.
Research
use only (so
far?) | - | Deployed
at Axial
Seamount
Hydrother
mal
Emissions
Study
(ASHES)
and used
for sample
collection
an on-
device
assays
(unclear
which) | | Seegers et al. (2015) Subsurface seeding of surface harmful algal blooms observed through the integration of autonomous gliders, moored environmental sample processors, and satellite remote sensing in southern California. Limnol Oceanogr. https://doi.org/10.1002/lno.10082 | 2015 | UCLA
and
MBARI
collabora
tion | Temporal
monitoring of
algal blooms
/ Proof of
concept | НАВ ѕрр. | Moored
ESPs at
10m depth,
AUV
monitoring
of
chlorophyll
in 4D, and
satellite | 2 ESPs
used for
continou
s
monitorin
g | | SHA and
ELISA | Commerciall
y available
ESPs
(MBARI)
and AUVs
used | - | Indicated importance of subsurface population st to source for "seeding" surface Pseudo- | | | IF | | | 200 | |-----|-------------|---------|----------|---------------| | 155 | SCIENCE - S | ERVICES | - SUSTAI | 100 INABILITY | | 110 | | | 111 | | | | | | | | remote
sensing | | | | | | nitzschia
HABs in S
California. | |---|------|---|--|---|---|--|--|--|--|---|---| | Pargett et al. (2016) Development of
a mobile ecogenomic sensor.
Proceedings of OCEANS 2015 -
MTS/IEEE Washington.
https://doi.org/10.23919/OCEANS.2
015.7404361 | 2016 | MBARI | Technical
development | (depends
on
configuratio
n) | 2G-ESP | Continou
s RT for
up to 3
month,
max
depth
50m | 100+
pucks
but only
3 for
storing
filters (?) | SHA and
Immunoso
rbent
assays
(cELISA;
for toxins)
w ready to
use
assays for
specific
HABs | Commerciall y available from McLane Labs and used in routine monitoring in the US: https://mclan elabs.com/e nvironmenta I-sample-processor/ | - | - | | Yamahara (2019) In situ
Autonomous Acquisition and
Preservation of Marine
Environmental DNA Using an
Autonomous Underwater Vehicle.
Front Mar Sci.
https://doi.org/10.3389/fmars.2019.0
0373 | 2019 | MBARI | Benchmarkin
g of eDNA
filter
preservation
in ESP | Range of microbial to macro (fish) spp. | 3G-ESP
mounted on
LR-AUV | 15 x 1L
ESP
samples
(1h each) | RNALate
r | Not used | 3G-ESP still not commercial (?) | qPCR of
ESP and
traditiona
lly
collected
samples | No
significant
differences
in eDNA
densities
observed
between
ESP and
traditionall
y collected | | Ribeiro et al. (2019) Development of an autonomous biosampler to capture in situ aquatic microbiomes. PloS ONE, https://doi.org/10.1371/journal.pone. 0216882 | 2019 | Portuges e consortiu m: CIIMAR, INESC TEC, and others | Technical
development
and proof of
concept | Prokaryotic
and
phytoplankt
on | eDNA
sampling by
pumping
and filtering
with the
developed
IS-ABS field
prototype | 2L
samples.
Distinct
size
fractions.
Unclear
how
many | Unclear | No | In
developmen
t | Metabarc
oding
with both
autonom
ously
and
manually | | | | | | | | | samples
(0.2 uM
or
custom) | | | | collected
sample | | |---|------|------------------------------|--|--|--|---|--------------|-------------------|--|---|---| | Zhang et al. (2020) Persistent Sampling of Vertically Migrating Biological Layers by an Autonomous Underwater Vehicle Within the Beam of a Seabed-Mounted Echosounder. IEE J Ocean Eng. https://doi.org/10.1109/JOE.2020.29 82811 | 2020 | MBARI | Proof of
concept of
acuoustics
guided
eDNA
sampling | Invertebrats | 3G ESP
mounted on
LR-AUV | 24
samples
taken
(out of
60) | RNALate
r | acoustic
modem | 3G-ESP still
not
commercial
(?) | | | | Hansen et al. (2020) Remote,
autonomous real-time monitoring of
environmental DNA from
commercial fish. Sci Rep,
https://doi.org/10.1038/s41598-020-
70206-8 | 2020 | DTU
Aqua
(Denmar
k) | Evaluation of
ESP
monitoring of
fish | 4x
commercial
fish spp. | 2G-ESP on
land, with
pump, in
large
mesocosm | Continou
s RT,
3x1L
samples
@ .2 uM
(may be
too little
vol.) | - | RT-qPCR | ESP
commerciall
y available | qPCR
validation | Only the most abundant species (mackarel) was detected consistentl y with enough accuracy (not only due to ESP) | | Sepuldiva et al. (2020) Robotic environmental DNA bio-surveillance of freshwater health. Sci Rep, https://www.nature.com/articles/s41 598-020-71304-3 | 2020 | US Geol.
Survey | Proof of concept for freshwater | Pathogen
and
invasive fish
spp. | 2G (?) ESP
on land with
pump | 1L
samples | RNALate
r | - | ESP
commerciall
y available | qPCR
(from
stored
samples
instead
of on
ESP.
Why?) | Detects equally well but not better in spite of more samples so less sensitive. Still adventago us due to | | | | | | | | | | | | | reduced effort. A later article also takes into account env parameter s and eDNA persistenc e / distribution modelling | |--|------|---|---|-------------|--|--|--------------|---|---|---|--| | Knapik et al. (2020) Metatranscriptomic Analysis of Oil- Exposed Seawater Bacterial Communities Archived by an ESP. Microorganisms. https://www.mdpi.com/2076- 2607/8/5/744 | 2020 | NORCE
(Norway) | Mesocosm / indicator identification | env. MRNA | 2x 2GESP w
oil exposure
mesocosm | 7x 0.7L
samples
@ .2 uM | RNALate
r | - | ESP
commerciall
y available | Metatran
scriptomi
cs and
16S
metabarc
oding | | | Tang et al. (2020) New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods. The ISME journal. Doi: 10.1038/s41396-020-0703-6 | 2020 | National
Oceanog
raphy
Centre
(NOC) | Description
of
distribution
of nitrogen
fixation and
diazotrophs | Prokaryotes | Robotic
Cartridge
Sampling
Instrument
—RoCSI | High-
frequenc
y filtering
of
between
1.5-4L of
seawater | RNALate
r | | Don't know if it is sold. It is being used in the frame of iAtlantic and TechOceans projects. | RT-
qPCR
and
metabarc
oding | | | | IE | DIC | Oca | |-----|----|-----|--------------| | 155 | | | STAINABILITY | | - 1 | | | | | Zhang et al. (2021) A system of coordinated autonomous robots for Lagrangian studies of microbes in the oceanic deep chlorophyll maximum. Science Robotics. http://doi.org/10.1126/scirobotics.ab b9138 | 2021 | MBARI | Multi-robot
monitoring
system proof
of concept | Prokaryotic diversity | LR-AUV
("Aku") w
3G-ESP for
DCM
sample
collection at
260m | 0.2 +
0.45 +5
uL filters
(1.6L
during
1h) | RNALate | ChIA,
nutrients | 3G-ESP still not commercial (?) | Metabarc
oding | "Deployed in the N Pacific Ocean within the core of a cyclonic eddy, this coordinate d system autonomo usly captured fundament al characteris tics of the in situ DCM microbial community in a manner not possible previously" | |---|------|-------------------------|---|-----------------------|---|--|---------|---------------------------|-----------------------------------|-------------------|--| | Moore et al. (2021) An Autonomous
Platform for Near Real-Time
Surveillance of Harmful Algae and
Their Toxins in Dynamic Coastal
Shelf Environments. J Mar Sci Eng.
https://doi.org/10.3390/jmse9030336 | 2021 | MBARI,
NOAA,
etc. | HAB
monitoring
proof of
concept | НАВ spp. | Moored ESP | Continou
s (up to 7
weeks) | | SHA: 7
spp. Of
HABs | ESP
commerciall
y available | - | Possible connection bloom formation — nutrients-wind-forced coastal-trapped waves. | | Formel et al. (2021) Subsurface automated samplers for eDNA (SASe) for biological monitoring and research. HardwareX. https://doi.org/10.1016/j.ohx.2021.e0 0239 | 2021 | NOAA,
Uni. Of
Miami,
Missisipi
State
Uni. | Technical
specs for
automated
open source
low cost
water
sampler | (sampling only) | eDNA
sampling by
pumping
and filtering | Down to
50 m
(shallow
only) and
up to 4
samples
but for a
price of
<300€ | DNAgard | No | Freely available speces (but not built?) | qPCR,
dPCR,
metabarc
oding | - | |--|------|--|--|---|---|--|---|--|--|--|---| | Flanigan et al. (2021) Proc from OCEANS 2021 San Diego, https://doi.org/10.23919/OCEANS44 145.2021.9705708 | 2021 | SeaSatel
lites
(USA),
Scripps
institute | Technical
development | (depends
on
configuratio
n) | Programma
ble surface
water AUV
with solar
power | individual pumps, for one sampel each. Does not filter but collects up to 1L/sample | No | Not
currently | Commerciall
y available
(or soon)
from
SeaSats | Both
filtering
and
molecula
r | - | | Yoerger et al. (2021) A hybrid underwater robot for multidisciplinary investigation of the ocean twilight zone. Sci Robotics. https://doi.org/10.1126/scirobotics.a be1901 | 2021 | Woods
Hole,
MBARI,
Stanford | Technical
development
report for
mesopelagic
AUV. ROV
for
positoning | (depends
on
configuratio
n) | eDNA
sampling by
pumping
and filtering | Down to
1000 m
depth
able to
track diel
migrators
. Up to
12
samples | RNALate r? | - | In
developmen
t | - | https://ww
w.whoi.ed
u/what-we-
do/explore/
underwate
r-
vehicles/a
uvs/mesob
ot/ | | Truelove et al. (2022) Expanding the temporal and spatial scales of environmental DNA research with autonomous sampling. Env DNA. https://doi.org/10.1002/edn3.299 | 2022 | MBARI
(CA,
USA) | Proof of concept / benchmarkin g | Microbial to
macro (fish)
diversity | ESP (3G-
ESP)
mounted on
long range
AUV
(Tethtys?) | 1L
filtering
at 0.2 uM
Millipore
(slowly,
"sipping") | Flushed
with N2,
then in
RNALate
r. Max 60
samples | Not used
in this
study but
see below
for 2G
ESP | 3G-ESP and
LR-AUV
developed
in-house at
MBARI.
Reasearch
use so far
(?) | Metabarc
oding
(12S,
16S,
18S,
COI) | Results were comparabl e to samples taken from boat with Niskin bottle concurrentl | | coordinator: Ifremer, France. | | | | | | | *** | | | | | | | |---|------|----------------------------------|--|---|---|---|-----|---|---|---|--|--|--| | | | | | | | | | | | | y. Some differences may be explained by cells not lysing as with vacuum pump | | | | Govindarajan et al. (2022). Improved biodiversity detection using a large-volume eDNA sampler with in situ filtration and implications for marine eDNA sampling strategies. Deep-Sea Research I. doi: 10.1016/j.dsr.2022.103871 | 2022 | Woods
Hole
(and
others) | Evaluation of
biodiveristy
detection by
large-volume
(40-60L)
eDNA
sampler
compared to
CTDs (2L) | Global
diversity
(v9-18S
rRNA) | eDNA
sampling by
pumping
and filtering | 12
samples
of 40-60L
collected
between
20-400 m
depth
(but can
go
deeper).
Filters
seawater
at a rate
of 2
l/min. | No | Machine-vision monochro me stereo cameras, color camera, and high-sensitivity radiometer (in the AUV) | No information in the paper, but Yoerger (developer of Mesobot AUV; Yoerger et al. 2021) is co-author here. | Metabarc
oding of
autonom
ously
and
CTD-
collected
samples | The higher the seawater liters filtered the higher the diversity detected. They detected 66% more diversity filtering 40-60L using the large-volume eDNA sampler in a the Mesobot AUV than filtering | | | (depends configuratio on Dartmout h Ocean Technolo Commercial product https://dartmouthocean.com/product s/edna-sampler eDNA sampling by and filtering pumping Up to 9 samples, max 20 m depth, RNALate Flurometer (optional) y available Commerciall qPCR, dPCR, metabarc oding ... only 2L using the CTD. The JERICO-S3 project is funded by the European Commission's H2020 Framework coordinator: Ifremer, France. | | | gies Inc.
(Canada) | | | | 0.2 uM
polycarb
(or
different) | | | | | | |--|------|-----------------------|--|--|--------------------|---|---|----------------|-------------------------|---|--| | https://www.eomoffshore.com/environmentalsamplingprocessor | - | EOM
Offshore | Website describing routine monitoring of HABs in the Gulf of Maine | HABs | 2G ESP
(moored) | Routine
near-
realtime
monitorin
g of
HABs | - | SHA or
qPCR | Deployed for monitoring | - | | | eDNA Sampler: A fully integrated environmental DNA sampling system | 2018 | Smith-
Root | Description
of a fully
integrated
eDNA
sampler | Any – but
developed
originally for
fish | ANDe™ | 47 mm
filter
membran
e | - | - | Fish
monitoring | - | | #### 4.B - Conclusion #### 4.1. Synthesis of main conclusion The table showcases examples of developments and applications of devices for DNA sampling and/or analysis. This table will set the basics for future discussion and for the preparation of a review/synthesis document that will be shared with the relevant agents within and outside the consortium in form of a technical paper or a manuscript submitted for publication. This will be aimed at fostering the discussion on eDNA automated sampling, in particular regarding the challenges and obstacles associated with semi-autonomous to autonomous, deployable instrumentation developed for omics-based sample collection, processing and in-situ analysis. Yet, as it was concluded in the Marine Omics Instrumentation and Technology Workshop, whose goal is to survey the technology landscape for ocean deployable biomolecule sampling and sensing instrumentation by convening technology innovators, and summarized by the MBARI CEO Chris Scholin "There's no single sensor or sampler technology that can solve all of our problems. The future lies in finding the right combination of devices and the platforms on which they are deployed to address specific use cases." ## 4.2. Next steps (work plan) The table and document to be produced will be contrasted with the relevant scientist and endusers so that it is kept up to date. Additionally, the difficulty to select a single universal eDNA sampling device and the recognized need of adjusting for each case-study does not prevent the need for developing standardizing processing pipelines and harmonizing data acquisition, for which initiatives are currently ongoing such as the Ocean Best Practices Task Team on Omics/eDNA Protocol Management (https://www.oceanbestpractices.org/ocean-best-practices-systems/our-work/task-teams/omics/).